Homotopy minimal period self-maps on flat manifolds with cyclic holonomies

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flat Holonomies on Automata Networks

We consider asynchronous networks of identical finite (independent of network’s size or topology) automata. Our automata drive any network from any initial configuration of states, to a coherent state in which it can carry efficiently any computations implementable on synchronous properly initialized networks of the same size. A useful data structure on such networks is a partial orientation of...

متن کامل

Low dimensional flat manifolds with some classes of Finsler metric

Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.

متن کامل

On manifolds with finitely generated homotopy groups

Let G be an infinite group which is finitely presented. Let X be a finite CW−complex of dimension q whose fundamental group is Z × G. We prove that for some i ≤ q the homotopy group πi(X) is not finitely generated. Let M be a manifold of dimension n whose fundamental group is Zn−2×G. Then the same conclusion holds (for some i ≤ maxn2 ] , 3 } ) unless M is an Eilenberg-McLane space. In particula...

متن کامل

Closed Geodesics and Holonomies for Kleinian Manifolds

For a rank one Lie group G and a Zariski dense and geometrically finite subgroup Γ of G, we establish the joint equidistribution of closed geodesics and their holonomy classes for the associated locally symmetric space. Our result is given in a quantitative form for geometrically finite real hyperbolic manifolds whose critical exponents are big enough. In the case when G = PSL2(C), our results ...

متن کامل

Se p 20 03 CYCLIC MAPS IN RATIONAL HOMOTOPY THEORY

The notion of a cyclic map g : A→ X is a natural generalization of a Gottlieb element in πn(X). We investigate cyclic maps from a rational homotopy theory point of view. We show a number of results for rationalized cyclic maps which generalize well-known results on the rationalized Gottlieb

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asian Journal of Mathematics

سال: 2013

ISSN: 1093-6106,1945-0036

DOI: 10.4310/ajm.2013.v17.n4.a6